Submodularity in Conic Quadratic Mixed 0–1 Optimization

نویسندگان
چکیده

منابع مشابه

Submodularity in Conic Quadratic Mixed 0-1 Optimization

We describe strong convex valid inequalities for conic quadratic mixed 0-1 optimization. The inequalities exploit the submodularity of the binary restrictions and are based on the polymatroid inequalities over binaries for the diagonal case. We prove that the convex inequalities completely describe the convex hull of a single conic quadratic constraint as well as the rotated cone constraint ove...

متن کامل

Global Quadratic Optimization via Conic Relaxation

We present a convex conic relaxation for a problem of maximizing an indefinite quadratic form over a set of convex constraints on the squared variables. We show that for all these problems we get at least 12 37 -relative accuracy of the approximation. In the second part of the paper we derive the conic relaxation by another approach based on the second order optimality conditions. We show that ...

متن کامل

Extended formulations in mixed integer conic quadratic programming

In this paper we consider the use of extended formulations in LP-based algorithms for mixed integer conic quadratic programming (MICQP). Through an homogenization procedure we generalize an existing extended formulation to general conic quadratic constraints. We then compare its effectiveness against traditional and extended formulation-based algorithms for MICQP. We find that this new extended...

متن کامل

Intersection Cuts for Mixed Integer Conic Quadratic Sets

Balas introduced intersection cuts for mixed integer linear sets. Intersection cuts are given by closed form formulas and form an important class of cuts for solving mixed integer linear programs. In this paper we introduce an extension of intersection cuts to mixed integer conic quadratic sets. We identify the formula for the conic quadratic intersection cut by formulating a system of polynomi...

متن کامل

Immunizing conic quadratic optimization problems against implementation errors

We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be useful for other purposes. We extend the result to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operations Research

سال: 2020

ISSN: 0030-364X,1526-5463

DOI: 10.1287/opre.2019.1888